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On - the  ~~ Optimality of a Totally  Singular  Vector  Control: 
An Extension  of the Green's Theorem Approach 

t o  Higher  Dimensions* 

summary 

An extension  of  the  Green's theorem  approach to  higher  dimensions 

has been derived for the  determination of the   op t imal i ty   o f   to ta l ly  

s ingular   vector   controls   governing n dimensional  nonlinear  systems  with 

the  (n-1)  dimensional  vector  control  appearing  l inearly.  The e s s e n t i a l  

condition that motivate8  the  analysis i8  t h a t  the c o e f f i c i e n t s  of t he  

vec tor   cont ro l ,  when viewed as tangent  vectors, form a complete  system 

of partial d i f fe ren t ia l   equa t ions   o f   o rder   (n- l )#  

T h i s  research was supported by the National  Aeronautics and  Space 
Administration, Ames Research  Center,  under  Contract NAS-2-2351. 



1. Introduct ion 

We are concerned  with  the  opt imal i ty   of   total ly   s ingular   vector  

controls  governing  dynamical  systems  of  the form 

and  the  extension of the  Green* s theorem to  higher  dimensions 

to   eva lua te  the opt imal i ty   o f   such   to ta l ly   s ingular   vec tor   cont ro ls .  
+ *  

The problem  of  defining a cont ro l  set  for  the  dynamical  system (1.1) is 

of  paramount  importance,  because  the  singularity  of a cont ro l  is an 

inherent  feature  of  the  dynamical  system  and  the  function o r  funct ional  

to  be extremized, and not   the   cont ro l   se t   per  se. It is not   the   in ten t  

here   to   ru le   ou t  a s ingular   control   because  of   the  l imitat ions on the 

cont ro l  imposed by a given  control  set .   Therefore,   the maximal cont ro l  

set which  overcomes these   l imi ta t ions  must necessa r i ly   i nc lude   d i s t r i -  

butions. It should be noted  that   Kreindle and  Neustadt  have  considered 4 5 

such   cont ro l   se t s   in   the i r   t rea tment   o f   l inear   sys tems.  However, for 

the  nonlinear  system  considered, we shal l  effectively  circumvent. a 

d i f f i c u l t  problem by replacing t h e  dynamical  system (1.1) by the 

equivalent  pfaffian  system 

dyr where the   cont ro l   has  the representa t ion  u - - r - d t  when i t  ex i s t s .  

1.2 

~~~~~~ + 
Greek le t te rs  w i l l  assume the  values 1 t o   n ,  and Roman l e t t e r s  1 t o  
(n-1). The excep t ions   t o   t h i s   ru l e   a r e   no ted  where they  occur. 

Following  the  usage i n  Reference 3, a to ta l ly   s ingular   vec tor   cont ro l  
means t h a t  all the  components of   the   cont ro l   a re   s ingular .  

+ +  
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The usual  summation convention on repeated  indices  is used. The 

so lu t ions   t o   t he   p fa f f i an   sys t em (1.2) w i l l  be  parametrized by x ( b ) ,  

y ( r )  and t ( a )  w i t h   t ( W )  monotone such  that  

It is assumed tha t   t he   vec to r   x (e )   has   va lues   con f ined  to  some simply 

connected  region D d ,  also Ad(x) and B (x)  are  twice  continuously 

d i f f e r e n t i a b l e   i n  D. Furthermore, i t  is assumed that  the  system (1.1) 

is cont ro l lab le ,  which impl ies   tha t   there   does   no t   ex is t  a s c a l a r  

function  W(t,x)  such  that  the  hypersurface  W(t,x) = constant   contains  

all the   so lu t ions   to   the   sys tem (1.1) independent  of  the  controls. From 

t h i s  can be inferred  that   the   system  of  n pa r t i a l   d i f f e ren t i a l   equa t ions  

d r  

6 

1.4 

is not  complete, so tha t   another   independent   par t ia l   d i f fe ren t ia l  

equation  can be determined by the  Poisson  operator   to   yield  the non- 

exis tence  of  a non-trivial.  W(t,x>, namely - ( t , x >  = aw 
d t  d!L ( t , x )  = 0. 

xd 
The problem  posed is to  determine  the  control  which s t e e r s   t h e  

state from some i n i t i a l   p o i n t  x t o  some f i n a l   p o i n t  xf i n  minimum time. 

We shall now state a fur ther   condi t ion which i n  essence is the  s ine  qua 

non of the  Green's  theorem  approach  to  higher  dimensions. 

0 
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I .  

Condition A 

The columns  of  the B (x) matrix are (n-1) l i n e a r l y  

independent  tangent  vectors,   furthermore  the syst.em 

of  partial d i f f e r e n t i a l   e q u a t i o n s  formed with the  

tangent   vectors  

o(r 

is a complete  system  of  order- (.n-L). 

T h i s  condi t ion  has  three important  implications which w i l l  be  developed 

i n   d e t a i l   i n  la ter  sec t ions ;  however, for  the  purposes  of  motivation 

we s h a l l   b r i e f l y   d e s c r i b e  what these  implicat ions  are:  

1) Condition A guarantees  the  existence  of a s ingle   unique  pfaff ian 

t o  system  (1.1). 

2) It provides a necessary  condi t ion  for   the  exis tence  of  an  optimal 

t o t a l ly   s ingu la r   vec to r   con t ro l .  The suf f ic iency   condi t ion   for  

the   ex is tence  of an opt imal   to ta l ly   s ingular   vec tor   cont ro l   fo l lows  

from the Green's  theorem  application. 

3) On applying  the  n-dimensional  Green's  theorem  to  the  single  pfaffian, 

t h e r e   r e s u l t s  n(n-l) hypersurfaces whose i n t e r p r e t a t i o n  as s ingular  

hypersurfaces  (assuming  an  analogy  with  the  ,?-dimensional  Green's 

theorem  approach) is doubtful   s ince w e  need  only  (n-1)  such  hyper- 

s u r f a c e s   t o   s p e c i f y   t h e   t o t a l l y   s i n g u l a r   v e c t o r   c o n t r o l .  However, 

Condition A enab les   an   i n t eg rab i l i t y  argument to  be  invoked  and 

from t h i s  i t  can  be shown t h a t  no  more than  (n-1)  hypersurfaces 

are obtained which  can  then  be  interpreted as s ingular   hypersurfaces .  

4 
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2. Existence ~~ ~ ." of  a Totally  Singular  Vector  Control 

L e t  qd (x)  be a vector   or thogonal   to   the columns  of B (x) 
4 r  

201 

Hence the  pfaff ian  system (1.2) can  be  expressed as a 

which is unique  to  within an a rb i t r a ry   mu l t ip l i ca t ive  

of  the  l inear  independence  of the columns  of B (x) otr 

s ing le   p fa f   f i an ,  

f ac to r  by .v i r tue  

2.2 

c . 
Let x = fie( t>  , t 1 t , tf J represent   parametr ical ly  a t o t a l l y   s i n g u l a r  

arc i n   s t a t e   s p a c e ,  which t r a n s f e r s   t h e   s t a t e  from xo = fl<t t o  

xf = fl6(tf).  Hemes has demonstrated  that   the   total ly   s ingular   arc  

a u t o m a t i c a l l y   s a t i s f i e s   t h e   p f a f f i a n  (2.2). The question now a r i s e s  

whether i t  is poss ib le   to   ob ta in  a parametr ic   representat ion i n  state 

space  of  the same t ransfer   (bu t   no t   necessar i ly  the same a r c )  by 

x = x(= 1, Q [ co, wf] and t = constant ,  tha t  is, s a t i s f y i n g  the 

p fa f f i an  

0 

0 

3 

with x" = x( Go) and  xf = x( Cf) . 
If t h i s  is possible, then the to t a l ly   s ingu la r   vec to r   con t ro l  w i l l  not  

be optimum, s ince  the t r ans fe r   o f  the state vector  from x" t o  x can 

be synthesized by sui table   impulses   to   achieve the t r ans fe r   i n   ze ro  

time. Therefore  the problem reso lves  down to   the   ques t ion   of   access i -  

b i l i t y   o f   p o i n t s  by t r a j e c t o r i e s   s a t i s f y i n g   t h e   p f a f f i a n  

f 



2.4 

The r e so lu t ion  of th i s   ques t ion   leads   to   the   fo l lowing  lemma. 

Lemma 2.1. A necessary  condition  that  an optimal 

t o t a l ly   s inRu la r   vec to r   con t ro l   ex i s t s  is tha t   t he  ~. 

p f a f f i a n  \y (x)dx = 0 be integrable .  
4- 4 

Proof. The proof makes use  of  the  following theorem7 and its contra- 

pos i t i ve  which we s h a l l  s tate formally. 

Theorem (CaPatheodory). I f  a pfaff ian  qA(x)dxA= 0 has  the  property 

tha t   i n   eve ry   a rb i t r a ry   c lose  neighborhood  of a given  point ‘ji there  

ex i s t   po in t s  which are inaccessible  Prom j;. by t r a j e c t o r i e s   s a t i s f y i n g  

the  pfaff ian,   then  the  pfaff ian is integrable .  

Contraposit ive.   If   the  pfaffian  l&(x)dxo(= 0 is not   integrable ,   then 

t h e r e   e x i s t s  some neighborhood  of a given  point Ti i n  which a l l  po in ts  

are access ib le  by t r a j ec to r i e s   s a t i s fy ing   t he   p fa f f i an .  

Assume the   p faf f ian  is not   integrable ,   then  i f   the   neighborhoods  of  

a c c e s s i b i l i t y  from given  points   are   c losed,  the conclusion  of the lemma 

is immediate. The maximal neighborhood  of  accessibil i ty from a given 

point w i l l  necessar i ly  be open. Assume the  neighborhoods t o  be  open 

and  consider a neighborhood  of  accessibil i ty fl(x) of a given point Ti 

on the s ingular   a rc   def ined  by 3i = ff(t), to< < tf. If the   s ingular  

a r c  x = @(t),  tc [to, tf ] is contained  within  the  neighborhood q ( x ) ,  
then  once  again  the  conclusion  of  the lemma is immediate. If t h i s  is 

not  the  case,   then  there will exist a t and a t2 such t h a t  the   po in ts  1 

6 



of in t e re sec t ion   o f   t he   s ingu la r   a r c   w i th   t he  neighborhood qi)(Tz) w i l l  

be  given by x = $"(t); tl < t <t2. Consider  the  point x' =flS(t1)  and 

its neighborhood of a c c e s s i b i l i t y  4 (x' . The intersect ion  of   (x '  ) 

and q ( z )  must be  non-void,  otherwise  there w i l l  ex i s t   po in t s   o f   f l (xg )  

which are inaccess ib le  from x' and  hence  contradict  the  assumption 

tha t   t he   p fa f f i an  is not  integrable.  Therefore i f  the   p faf f ian  is not 

integrable ,   then  there  w i l l  e x i s t  an x ( 6 )   s a t i s f y i n g   v d ( x ( C )  1 dx( 0 - 1  0 

that t r ans fe r s   t he  state vector from xo t o  x in   ze ro  time and the 

s ingu la r   a r c  w i l l  not be optLmum, which  completes  the  proof  of  the lemma. 

f 

I f   t he   p fa f f i an   vK(x)dx4=  0 is integrable ,   then  there   exis ts  

a non-zero integrat ing  factor   ?(x)   and a function V(x>  such  that 

Therefore from  (2.1) we have 

2.6 

and from Condition A w e  are assured  that   such a V(x> e x i s t s  so t h a t  

the  pfaff ian  (x)dxd= 0 is integrable .  It should be noted t h a t  the 

p fa f f i an  
A 

is not  integrable ' ,   otherwise  this would contradict  the  assumption 

tha t   t he  system (1.1) is control lable .  

7 



3. N-dimensional  Green's Theorem 

The problem of extremizing  2-dimensional  line  integrals  of  the 

form f 

I = [ [y(xl,x2)dxl + a2(x1,x2)dx2 1 3.1 
X 

is a fa i r ly   s imple   one ,   s ince   the   re la t ive   op t imal i ty   o f  two d i s t i n c t  

t r a j e c t o r i e s  may be compared d i r ec t ly   unde r   su i t ab le  smoothness  con- 

d i t i ons ,  by an  appl icat ion  of   Green 's  theorem. The unique  feature 

of   this   approach when a p p l i e d   t o  two dimensional  nonlinear  systems, 

i n  which the   con t ro l   ( s ing le  component) appears   l inear ly2,  is tha t   t he  

pro jec t ion  of t he   s ingu la r   a r c   i n   t he   s t a t e   space  is obtained  immediately 

by W(x1,x2) = 0 where 

The u t i l i t y  of  the method is immediately  obvious  since  only  simple 

algebraic  manipulations are required  to   generate   &(x x 1. Before 

applying  Green's  theorem  to  the  control problem  posed, w e  s h a l l   b r i e f l y  

1, 2 

review the analogue of Green's  theorem in  higher  dimensions. 

L e t  2 = (z z 1, s C2 def ine  an  or ientable   surface S i n  s4 1' 2 4 

DCR";  furthermore, l e t  2 . Q )  and z2(Q3 define a Jordan  curve T i n  S 

enclosing E. We s h a l l  assume t h a t  the mapping s is one t o  one  on S 

for   every   pa i r   (x  x # x and the  corresponding  Jacobians J 

do  not  change  sign on S and  can  vanish  only on a subset  of S having 

zero  Jordan  content  (in R >. Since S is or ien tab le  then there  is a 

A' "pi 4 p -f3 

8 2 
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unique   d i rec t ion   assoc ia ted   wi th   the   Jordan   curve   rand   the   d i rec t ion  

of   each  project ion  of   Ton  to   the  coordinate   planes,   denoted by r 
w i l l  be determined by the  sign  of  the  corresponding  Jacobian J 

“ B  

“‘1 
Consider  the l i n e  integral   around r 

f 
3*4 

where a (x)  C’ i n  €3”. 
Transforming   the   l ine   in tegra l   to   the   sur face   coord ina tes  (z1,z2) and 

using  Green’s  theorem we obtain 

Defining 5 t o  be the  project ion of 5 on to   the  coordinate   planes,  

then  taking  the  inverse  transformation and renumbering d a n d  w e  obtain 
dS 

where 

.A = 1 ... n 
p = d+l, . . . ,n 

3.5 

In applying the higher  dimensional  Green’s theorem t o   t h e   c o n t r o l  

problem  .(1.1) w e  are immediately  faced  with a paradoxical   s i tuat ion.  



In  analogy  with  the two dimensional  Green’s  theorem  approach, i f  we 

i n t e r p r e t  w = 0 as singular  hypersurfaces,   then  there will exist 

n(n-l) such  hypersurfaces,  whereas we need  only  (n-1)  hypersurfaces 

to  determine  the  (n-1) components of   the   to ta l ly   s ingular   cont ro l .  

When n=2  the number of  hypersurfaces are the same, while f o r  n > 2 

we obtain  too many hypersurfaces; however, s ince   the   p faf f ian  

vd (x)dxJ(= 0 is in tegrable ,  i t  w i l l  be shown t h a t  no  more than  (n-1) 

of   the n(n-l) hypersurfaces u) = 0 are independent. 

A P  

2 

“B 

4. On the  Optimali ty  of a Totally  Singular  Vector  Control,  by the 
n-dimensional  Green’s Theorem Approach 

. . ~ ~ 

By virture  of  Condition A t h e r e   e x i s t s  a unique  pfaff ian  to   the 

control  system  (1.1) which  can  be  expressed as 

4 4.1 

Equivalently  the  pfaffian  could be expressed by equation (2.5) as 

4.2 

However, the  determination  of V(x) is inconsequent ia l   to   the  analysis ;  

what is important is to   genera te   the   p faf f ian  (4.1) from the  system of 

pfa f f i ans  (1.2) by the   e l imina t ion   of   the   d i f fe ren t ia l s  dy . r 

It has  been assumed in  equation  (4.1)  that   (x)AJx) f 0 i n  D. 

From the   cont ro l lab i l i ty   requi rements  i t  is known t h a t  I#‘ (x)A  x> $ 0  

r c  . r +  
10 



i n  D otherwise  the  hypersurface V(x) = constant would contain a l l  the 

so lu t ions  t o  equation (1.1)  independent  of  the  controls. 

By equation (4.1) the  time requi red   to   t ransfer   the  state from 

xo to  x through  system (1.1) can  be  expressed as a l i n e   i n t e g r a l  by f 

4- 3 

We now perform  the  usual r i t u a l  of comparing two t r a j ec to r i e s   j o in ing  

x t o  x that p ro jec t  a Jordan  curve r i n  s ta te   space.  0 f 

It is assumed tha t   t he  two t r a j e c t o r i e s  can be transformed con- 

t inuous ly   in to  one another,  so t h a t  a simply  connected  surface  can  be 

constructed  containing  the two t r a j e c t o r i e s .  Denoting by I1 and I2 

the   respec t ive   cos ts   to   t raverse   the   t ra jec tor ies  and accordingly, 

assoc ia t ing  a sense of d i r e c t i o n   t o   r u e  have 

On applying  the  n-dimensional  Green's  theorem w e  obtain 

I1 - I2 = / udp o( /s dx  dx G( = l , * . * , n  4.4 

socP = d+l , . . . ,n  

From the  form of  U, w e  have  immediately 
4 P  
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Proof. The - 

Lemma 4.1. No more than (n-1) of   the 

hypersurfaces W ( x )  = 0 w i l l  be  independent. 

proof   fol lows  direct ly  from the  theorem7 on t h e   i n t e g r a b i l i t y  

n(n-1) 

of a pfaf f ian .  

Theorem. A necessary  and  suff ic ient   condi t ion  that   the   pfaff ian 

a (x)dx& = 0 be. i n t eg rab le  is 
4 

Since   the   p faf f ian  y/4( ( x ) d x  0 is in tegrable ,   then   the   p faf f ian  A =  
( x ) d x A  

= 0 a l s o  is in tegrable .   Apply ing   the   in tegrabi l i ty   t es t  

y i e l d s  
X 

4.6 

from which i t  follows  that   only (n-1)  of  the n(n-l) hypersurfaces 

= 0 are independent. 

The hypersurfaces = 0 can now be in t e rp re t ed  as s ingu la r  

hypersurfaces ,   s ince  their  common intersect ion  (assuming i t  e x i s t s )  

y ie lds   the   to ta l ly   s ingular   a rc .   This   equiva lence  is demonstrated i n  

the  next   sect ion.  The importance of the  n-dimensional  Green's  theorem 

approach is in  the  simple  algorithms i t  provides  for  the  determination 

12 
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of the   s ingular   hypersurfaces  and the   t o t a l ly   s ingu la r   a r c .  Once t h i s  

has been  accomplished,  then i t  is a re lat ively  s imple matter to   cons t ruc t  

a two parameter group as i nd ica t ed   i n   Sec t ion  3, which contains   the 

t o t a l l y   s i n g u l a r   a r c  for some values of the  parameters and then  use  the 

2-dimensional Green's theorem t o  evaluate   global ly   the  opt imal i ty  of the 

t o t a l l y   s i n g u l a r  arc. Since we are pr imar i ly   in te res ted   in   eva lua t ing  

the   op t imal i ty  of t h e   t o t a l l y   s i n g u l a r   a r c ,  i t  is t a c i t l y  assumed t h a t  

the  s ingular   hypersurfaces  have a common in t e r sec t ion   t ha t   can  be repre- 

s e n t e d   i n  terms of  a single  parameter x = x ( a  so t h a t  d (x( 0-1 1% 0 ,  

If this is not   the  case,   then  the  control  will not   be  total ly   s ingular ;  

t h a t  is, all components  of  the  control  are  singular. We s h a l l   i l l u s t r a t e  

the  method with an obvious example. Consider  the  system 

aP 

. 1 = ul; i2 = u2; - 4.7 x 3 -  2 2 2 
4. + x3 

and the problem is t o   t r a n s f e r   t h e   s t a t e  from [ 0,0,1] t o  [0,0,2] i n  

minimum time. It is obvious tha t  the   sys tem  of   par t ia l   d i f fe ren t ia l  

equations (1.5) is a complete system of   order  2 thus   s a t i s fy ing  

Condition A, The l i n e   i n t e g r a l  (4.3) is 

4.8 

so t h a t  W = 0; U13 = 2x1; L3 2~ = 2x2. The singular  hypersurfaces 

are given by the  planes x = 0; x 0 and the   s ingular  arc can be 

12  

1 2 =  



parametrized by x = 0; x 

the surface S (see  Figure 11, containing  the  totally  singular a r c ,  i n  

1 = 0; x3 = 6. Let the  representation of 

terms of the two parameters z and z2 be 1 

1 = z1 cos jd 

4.9 

so that z1 = 0, z2 = (r are the  values of the  parameters yielding  the 

singular  arc. 

I 
S 

X 1 

Figure 1 
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Denoting  by I the   cos t   a long   the   to ta l ly   s ingular   a rc ,  and  by I the 

cost   along  any  other arc conta ined   in  S, then 

8 

I - Is = 2 2  
+x3 >ax3 = (2, + z2 )dz2 by (4.9). 2 2  

r r 
Hence applying  the 2-dimensional Green's theorem y i e l d s  

so that t h e   t o t a l l y   s i n g u l a r   a r c  is optimum r e l a t i v e   t o   t h e  comparison 

t ra jec tor ies   conta ined   in   the   fami ly   o f   sur faces   g iven  by (4.9). 

A more general   family  of  surfaces,  similar t o  (4.91, can be described 

i n  terms of a vector  valued  parameter $ by 

x2 = Zlf2(Z2i$) 4.10 

and f o r  z < 0 1- 



80 tha t   once   aga in   the   to ta l ly   s ingular   a rc  is optimum r e l a t i v e   t o   t h e  

comparison  t ra jector ies   contained  in   the  family  of   surfaces   given by 

(4.10). The existence  and  construction  of a family  of  surfaces con- 

t a in ing  a l l  possible   comparison  t ra jector ies  will be l e f t  as an open 

question. 

5. Equivalence Between the  Hypersurfaces w = 0 and the   Tota l ly  
Singular  Problem AP 

Treating  the  t ime  optimal problem  (1.1) by the  conventional 

methods of  optimization , the  Hamiltonian is 9 

The singular  problem  giving r ise t o   t h e   t o t a l l y   s i n g u l  

occurs when 

is sa t i s f ied   toge ther   wi th  

5.2 

ar cont ro l  u '(t) r 

16 



Furthennore,  the  Hamiltonian is a constant  along  the  extremals and 

t h i s   c o n s t a n t  is zero by v i r tue   o f   the   t ransversa l i ty   condi t ion ,   to   y ie ld  

5.6 

Differen t ia t ing   equat ion  (5.3)  with  respect t o  time and using  equations 

(5.4)  and  (5.5) t o  s implify w e  obtain  the  following set of (n-1) 

equations  which also has t o  be s a t i s f i e d .  

5.7 

It fo l lows   tha t   the   coef f ic ien ts  

a r e   e i t he r   ze ro  or some linear  combination  of B [ V"(t) ] otherwise 

equations (5.3) and  (5.7) would imply a t r i v i a l  resul t  f o r  p (t). To 
r2 

demonstrate  the  equivalence  between  the  hypersurfaces w d P =  O and the 
singular  problem, w e  shall   for  convenience take the   p fa f f i an   i n   t he  

and r e c a l l   t h a t  V(x) sa t i s f ies   the   comple te   sys tem  of   par t ia l   d i f fe r -  

en t i a l   equa t ions  



5.9 

18 

of order (n-1). From the def in i t ion  of the  hypersurface ul 

have for the equivalent pfaf f ian  form (5.8) 
A / =  O w e  

2 
The factor q ' ( t ) )  AAqs(t)) 1 may be neglected  since by 

xT 
assumption 

From (5.9) we have 

which can be identified  with  equations (5.3) by defining 

5.11 



where A ( t )  is a non-zero  multiplier  that  has t o  be determined. Sub- 

s t i t u t i n g   t h i s  fonn (5.12) i n to   t he  Euler-Lagrange  equations (5.5) y i e l d s  

Using t h i s   r e s u l t  w e  f ind  from equations (5.10) t h a t  

1 

thus  showing  the  equivalence  between w q s ( t ) )  = 0 and the   s ingular  

problem. Some further  consequences of th i s   equiva lence  are as follows. 

h t l i p l y i n g   e q u a t i o n  (5.13) by B and summing and invoking (5.11) y i e l d s  

dP 

d r  

5.14 

I 



Differen t ia t ing   equat ion  (5 .9)  which is a n   i d e n t i t y   i n  x with  respect 

t o  X and  multiplying by %(x) and summing, gives  8 

By v i r t u e   o f  t h i s  resu l t   equa t ion  (5.14)  becomes 

1 

5.16 

which is  easi ly   recognized as equation  (5.7) 

Finally, t o  complete  the  equivalence, i f  we multiply  equation 

(5.13) by Ad ( P " ( t ) )  and sum we obtain 

Using  equation  (5.4) the above equation becomes 

20 



I 

However the  second term is zero by equation (5.14) 80 that the  above 

equation  can be i n t e g r a t e d   d i r e c t l y   t o   y i e l d .  

T h i s   r e s u l t  is equivalent   to   equat ion (5 .6 ) *  the  constancy  of  the 

Hamiltonian,  and  detennines  the  multiplier  A(t) .  

6. Minimization  of a Functional 

The ri-dimensional  Green's  theorem  approach  described i n   t h e  

previous  sections  can be applied  to  minimizing  functional8 of the form 

6.1 

The problem is to  determine a cont ro l   u r ( t )  which  by (1.1) t r a n s f e r s  

the  state from x t o  x with no r e s t r i c t i o n s  on t (tf free), such  that  

I is minimized. 

0 f f 

Since  there is no precise  statement  about the reachable set  f o r  

the  system (1.1) given, some r e s t r i c t i o n s  must be placed on L(x). This 

is necessary  because i t  could  t ranspire  t ha t  i f  f o r  some ur ( t )  the 

so lu t ion   t o   equa t ions  (1.1)  formed a closed  curve  in  a region  of state 

space where L(x) is negative,  than I can  assume any value  whatsoever 

simply by t ravers ing  the  c losed  curve  an  arbi t rary number of times. 

The existence  theorem  of M a r k u s  and Lee" circumvents t h i s  problem by 

21 



placing a r e s t r i c t i o n  on t However, w e  cannot  include  such a 

restr ic t ion  without   destroying  the  equivalence between the  hyper- 

f '  

surfaces W (x) = 0 and  the  singular problem. We s h a l l  assume t h a t  

L ( x ) r  0 i n  D so t h a t   t h e  problem becomes equiva len t   to  one of  minimum 

time. 

*P 

By use of   the   p faf f ian  (4.1) equation (6.1)  can be expressed as 

6.2 

For t h i s  form of   the  l i n e  in t eg ra l   t he   s ingu la r   hype r su r faces  are 

given by 

and  the  arguments  given in   Sec t ion  4 regarding  the number of  hyper- 

sur faces  still apply,   s ince  the  pfaff ian 

is in tegrable .  

Similar ly ,   the   equivalence between the  hypersurfaces CL, 
4 " )  = O 

and the   s ingu la r  problem  follows from Sect ion 5 with minor modifications. 

The t o t a l l y   s i n g u l a r   a r c   q s ( t )   w i t h   t h e   t o t a l l y   s i n g u l a r   c o n t r o l   u r s ( t )  

s a t i s f y  

.22 



and 

The Hamiltonian is a constant  along  the extremals and the  constant is 

zero by v i r t u e  of the   t r ansve r sa l i t y   cond i t ion  and t h e   f i n a l  time tf 

being  unspecified,  so that 

&om these  equat ions i t  can  be shown t h a t  

and  hence the  methods described can be used to   eva lua te   the   op t imal i ty  

of t h e   t o t a l l y   s i n g u l a r  arc. 

7. Some Examples 

In  applying  the  Green's  theorem  technique  to a s p e c i f i c  example, 

it is not  necessary  to  determine  beforehand i f  the  system (1.1) is 

controllable,   because i f  the  system (1.1) is not   control lable ,   then 

t h e   p f a f f i a n  (4.i) is in tegrable ,  and t he   i n t eg rab i l i t y   cond i t ions  are 

given by 



7.1 

Consider  the  following system 

. 
x = X  + x u  1 1 2 1  

The system  of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  (1.5) associated  with  the 

system (7.2). namely 

is a complete  system  of  order 2, thus  sat isfying  Condi t ion A. The 

corresponding  pfaffian (4.1) is 

%d% + x2dx2 + x dx 
d t  = 

" 1 2 3  
2 + x   2 + . x  

7.3 

and it is immediately  obvious that W12(x) fU13 (x) w (x) '= 0 so 

that the p fa f f i an  (7.3). is integrable.   Therefore the system (7.2) is 

not   cont ro l lab le ,   s ince  the hypersurface  W(t,x) 0 '"1 +x2 + x3 

constant   contains  all the solutions  independent of the controls.  

23 

2 2 2)e-2t - - 
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On the   o the r  hand, i t  is most important  to check  whether 

Condition A is sa t i s f ied   before   apply ing   the   Green ' s  thedrem  technique. 

It does not fol low  that ,  if the   required number of  hypersurfaces are 

obtained,  then  Condition A is au tomat i ca l ly   s a t i s f i ed ,  as demonstrated 

by the  following  counter-example. The system  equations are 

0 x1 = xz + u1 + x3u2 

x2 = x3 
. 

+ x u  2 2  . 
x3. = -x 2 1  x + x u  1 2  

and  the  pfaff ian (4.1) is 

d t  = dx2 x2dx 
2 2 

80 t h a t  

w = o  12 

x - x + 2x3x 2 
2 1 

M23 - - 
\'X2 2 + x:, 

Therefore, i t  would appear  that   the singular hypersurfaces are given by 

x = o  2 
x3 - 2x1 = 0 

I 



thus  yielding  the  correct number of  hypersurfaces  despite  the fact 

that  Condition A is not   sat i s f ied .  However, the  fal lacy  of   this  

re su l t  is readily  apparent,  since  the  controls u,( t )  and u2(t)  

yielding  the  arc 1 = & ; x2 = 0, x3 = 2 C do not exist without 

violat ing 1 f O ;  x3f 0. 

.26 
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